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Abstract
We consider a simple modification of standard phase-space path integrals and
show that it leads in configuration space to Lagrangians depending also on
accelerations.

PACS numbers: 03.65.−w, 45.20.Jj, 02.40.Gh

Phase-space path integrals usually take the form [1]∫
D�qD �p exp

(
i
∫ T

0
dt[�p · �̇q − H(�p, �q)]

)
, (1)

with border conditions enforced by the type of quantum mechanical amplitude to be evaluated.
Such integrals (or their Lagrangian counterparts) suffice for most physical applications,
provided the symplectic structure is canonical, ω0 = ∑

i dpi ∧ dqi .
In this communication, we would like to consider the following modified path integral:∫

D�qD �p exp

(
i
∫ T

0
dt[�p · �̇q − H(�p, �q) + θ/2(p1ṗ2 − p2ṗ1)]

)
, (2)

with θ a constant of dimension length-squared. We will subsequently work in two space
dimensions and with all indices down, �q = (q1, q2), �p = (p1, p2), for notational simplicity.
Standard notation will be used for velocity vi = q̇i ≡ dqi

dt
, acceleration ai = q̈i ≡

d2qi

dt2 and mass (m). The Planck constant is set to 1 throughout. The above apparently
innocuous modification actually amounts to a change in the symplectic structure, ω0 → ω =∑2

i=1

(
dpi ∧ dqi + θ

2 dpi ∧ dpj

)
, and has important consequences discussed below.

The path integral with a modified symplectic structure (2) describes transition amplitudes
in noncommutative quantum mechanics, a subject first introduced in [2] and intensively studied
in the last decade; see [3–9]2. It may also present further interest, since the modification in
equation (2) is quite simple and not too unnatural (it is a sort of magnetic field, but in momentum
space [9]). More precisely (2) describes quantum mechanics with an additional nonvanishing

1 On leave from Horia Hulubei National Institute for Nuclear Physics and Engineering, Bucharest, MG-077125,
Romania.
2 We do not attempt to appropriately quote the whole noncommutative mechanics literature in [3, 9].
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commutator between coordinates, [q1, q2] = iθ . This theory admits a first principles path
integral formulation only in phase space, as detailed in [8]. At the classical level, the extended
symplectic structure features an additional nonzero Poisson bracket, {q1, q2} = θ �= 0, and
the resulting equations of motion do not admit a standard Lagrangian formulation [9].

Nevertheless, one may enforce a (effective) Lagrangian formulation in configuration space
by integrating over the momenta in the path integral (2). This process is described here. We
first perform the calculation and then discuss the result.

Path integral

We path-integrate over the momenta in (2), to obtain the effective Lagrangian. Starting from
the partition function∫

Dq1Dq2Dp1Dp2 eiS (3)

with action

S =
∫ T

0
dt

[
p1q̇1 + p2q̇2 +

θ

2
(p1ṗ2 − p2ṗ1) − p2

1

2m
− p2

2

2m
− V (q)

]
, (4)

we wish to integrate over the momenta p1, p2. The potential part V (q) depends only on q1 and
q2 and plays no role in what follows (the method is valid for any V (q), more precisely for any
Hamiltonian with separate quadratic dependence upon momenta). We divide the time interval
T in n subintervals ε = T

n
(n → ∞ achieves the continuum limit), and choose for simplicity

the discrete derivative v(k) ≡ ẋ(k) ≡ x(k+1)−x(k)

ε
; no issues requiring symmetric operations of

any kind appear in the following. The relevant part of the discretized action (excluding V (q)

for now) becomes

S̃ =
n∑

k=0

[
εp

(k)
1 v

(k)
1 + εp

(k)
2 v

(k)
2 +

θ

2

(
p

(k)
1 p

(k+1)
2 − p

(k)
2 p

(k+1)
1

) − ε

(
p

(k)
1

)2
+

(
p

(k)
2

)2

2m

]
. (5)

The clearest way to proceed with the coupled Gaussian integrals is to introduce matrix notation.
Define the column vectors

V ≡ ε
(
v

(0)
1 , v

(1)
1 , . . . , v

(n)
1 . . . , v

(0)
2 , v

(1)
2 , . . . , v

(n)
2 . . .

)T
(6)

P ≡ (
p

(0)
1 , p

(1)
1 , . . . , p

(n)
1 . . . , p

(0)
2 , p

(1)
2 , . . . , p

(n)
2 . . .

)T
(7)

and the matrix

J = −a




1 0 0 · ·0 b 0 · ·
0 1 0 · ·0 0 b · ·
· · · · · · · ·
0 −b 0 · ·1 0 0 · ·
0 0 −b · ·0 1 0 · ·
· · · · · · · ·




,

where a = ε
2m

, b = mθ
ε

. Its inverse J−1 has the same form as above, but with different entries
a′, b′; namely a′ = 1/a and b′ = −b (the off-diagonal part changes sign and the overall factor
is reversed). In matrix notation, the discrete action becomes

S̃ = P T V + P T JP. (8)
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The coordinate transformation

P̄ ≡ P + 1
2J−1V (9)

does not change the path integral measure (DP̄ = DP), and leads to

S̃ = P̄ T J P̄ − 1
4V T J−1V. (10)

The first term is now integrated out, and no more dependence upon momenta appears, whereas
the second term leads to an exponent of the form (modulo a factor of i)

−1

4
V T J−1V =

n∑
k=0

[
ε
m

2

(
v

(k)
1

)2
+ ε

m

2

(
v

(k)
2

)2 − θm2

2

(
v

(k)
1 v

(k+1)
2 − v

(k)
2 v

(k+1)
1

)]
. (11)

Upon taking the continuum limit ε → 0, our main result follows∫
Dq1Dq2Dp1Dp2 eiS = N

∫
Dq1Dq2 exp

(
i
∫ T

0
dtLeff(qi, vi, ai)

)
(12)

with

Leff = m

2

(
q̇2

1 + q̇2
2

) − θm2

2
(q̇1q̈2 − q̇2q̈1) − V (q1, q2) (13)

and N a constant not depending on q’s. We have reintroduced the potential term, which
passed unscathed through equations (4)–(13). The second term in (13) is the correction due to
noncommutativity; it depends on velocities and accelerations, and has a universal character.
Its relative simplicity is striking and somehow unexpected. One is reconforted to find that the
Lagrangian (13) was studied by Lukierski et al [4] and shown to engender a noncommutative
structure. A more detailed discussion follows.

Discussion

As already mentioned, cf [8, 9], the resulting effective Lagrangian could not be a standard
one, depending only on coordinates and velocities. Given the complications introduced by
noncommutativity, one may have expected a priori an involved function, perhaps nonlocal or
potential dependent. Remarkably, the effective Lagrangian turned out to be the usual one plus
a universal correction depending also on the particle accelerations,

�L = − 1
2θm2(v1a2 − v2a1), (14)

θ denoting the noncommutative scale and m, vi, ai denoting the mass, velocity, acceleration,
respectively, along the i-axis, of a given particle

The term (14) was previously studied in complete detail in [4], although its appearance can
be traced back to earlier developments (cf [5–7]). Lukierski et al [4] started from considerations
of Galilean invariance in (2+1)-dimensions, and added (14) to a free Lagrangian m

2 �v2, to
provide a dynamical realization for a free particle Galilean algebra with one extra central
charge. Upon constrained quantization of this higher order action (which thus circumvents
the no-go theorem of [9]), noncommutative dynamics was shown to emerge for appropriate
choices of canonical variables. Two negative-energy ‘internal modes’ were proved harmless
since they decoupled from the four relevant degrees of freedom. Interactions were subsequently
introduced in a constrained way in order to keep the ghosts harmless, and were described by
potentials depending on noncommutative coordinates.

We review the derivation in [4] from our perspective, putting more emphasis on the
Faddev–Jackiw approach [10], in which the canonical structure is obtained more transparently
than in the Dirac formalism. Let us start from the Lagrangian

LLSZ = m

2

(
q̇2

1 + q̇2
2

) − θm2

2
(q̇1q̈2 − q̇2q̈1) − v(q1, q2, q̇1, q̇2), (15)
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with q1, q2 commuting, and a more general potential is considered (Lukierski et al initially
took v = 0). We put it into the Hamiltonian form using the Ostrogradski formalism (we
use the notation of [4], although they proceed differently at this stage of the Faddeev–Jackiw
approach):

yi ≡ q̇i , p̃i ≡ ∂L

∂q̈i

= kεij yj , k ≡ θm2

2
, (16)

xi ≡ qi, pi ≡ ∂L

∂q̇i

− d

dt

∂L

∂q̈i

= myi − 2kεij ẏj , (17)

L − piẋi + p̃i ẏi = H(x, y, p, p̃) = p̃i

εij

k
pj − mp̃2

i

2k2
. (18)

The action
∫

dtL is already in the Faddeev–Jackiw form, except for the constraint

kyi + εij p̃j = 0, (19)

which is easily solved:∫
dtL =

∫ (
pi dxi − p̃i

εij

k
dp̃j

)
−

∫
dt

(
p̃i

εij

k
pj − mp̃2

i

2k2

)
. (20)

The commutation relations are read out from the (inverse of) symplectic form

{xi, pj } = δij , {p̃1, p̃2} = k/2. (21)

We must now identify the ‘true’ coordinates Xi of the system. A Noether symmetry analysis
immediately unveils that in the v = 0 case [4], the Galilean boosts are given by Gi = pit −
mxi + 2p̃i ≡ pit − Ki . We have Ġi = 0, K̇i = pi . Since no time appears in Xi , only the Ki

part of Gi matters for the definition of Xi :

Xi ≡ Ki

m
= xi − 2p̃i/m. (22)

Momenta keep the same form, Pi ≡ pi , and their extraneous pair is required to commute with
Xi, Pi , leading to P̃i ≡ kpi/m + εij p̃j .

The Hamiltonian reads in the new variables Xi, Pi, P̃i , i = 1, 2,

H = P 2
i

2m
− mP̃ 2

i

2k2
+ v

(
qi = Xi +

2εij

m

(
kpj

m
− P̃j

)
, q̇i = kpi/m − P̃i

k

)
, (23)

whereas the commutators are

{X1, X2} = 2k

m2
= θ, {Xi, Pj } = δij , {P̃1, P̃2} = k/2. (24)

The last two equations define a noncommutative theory. The second term in the Hamiltonian
is however negative. To keep it decoupled from the X,P variables, one has to impose
that no P̃i appear in v. Thus v must depend on the linear combination qi − 2kεij

m
q̇i of its

variables, which results exactly in the noncommuting coordinates Xi . (LSZ assumed this and
proved consistency. We went slightly beyond their work and argued that this condition is also
necessary, not only sufficient.)

No obvious reciprocal of the canonical analysis of [4] is known to us at present; actually
a classical canonical approach leads to second (not third) order equations of motion [9]. We
provided here for the first time a univoque path integral derivation. (The inverse—Lagrangian
to Hamiltonian—analysis of [4] indeed suggests (14) as an interesting possibility, as already
pointed in [5], but does not single it out. The maximal order of the derivatives appearing
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in the effective Lagrangian is not fixed a priori.) We obtained the additional acceleration-
dependent term of [4] up to coefficients, and such a correction turned out to be the only
possibility available for noncommutative systems of Heisenberg type and Hamiltonians of the
form H = 1

2m

(
p2

1 + p2
2

)
+ V (q1, q2). Our derivation started ab initio with arbitrary potentials

V (q1, q2), in contrast to the inverse route taken in [4], where the (in the end noncommuting)
variables were first carefuly pinned down in the free theory.

The price to be paid for the initial noncommutativity of the coordinates is the
appearance of second-order time derivatives in the action, and the ensuing lack of appropriate
boundary/initial conditions for the two irrelevant ghost-like additional degrees of freedom.
Indeed, the classical equations of motion engendered by (13) are of third order in time
derivatives,

εij θm2 d3qj

dt3
+ mq̈i + ∂qi

V = 0. (25)

No fourth-order time derivatives arise for q1, q2, and this leads to two constraints in the
Hamiltonian formulation. Six constants are required—two more in comparison with the
commutative case; only four are available (for instance, the initial and final values of q1 and
p2). This apparent indeterminacy is a consequence of the initial noncommutativity of q1 and
q2, but poses no serious problem. The missing two constants are actually needed to specify
the motion of the two ‘internal’ modes, modes which must be eliminated for consistency,
cf [4] (see also [7]).
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